Techniques of isolation and Enumeration of Bacteria
Direct microscopic counts are possible using special slides known as counting chambers, consisting of a ruled slide and a cover slip. It is constructed in such a manner that the cover slip, slide, and ruled lines delimit a known volume. The number of bacteria in a small known volume is directly counted microscopically and the number of bacteria in the larger original sample is determined by extrapolation. Dead cells cannot be distinguished from living ones. Only dense suspensions can be counted.
1/20, 000, 000 cm². If for example, an average of five bacteria is present in each ruled square, there is 5 x 20,000,000 or 10^8, bacteria per milliliter. A suspension of unstained bacteria can be counted in the chamber, using a phase-contrast microscope.
The number of bacteria per cc = The average numbers of bacteria per large double-lined square X The dilution factors of the large square (1,250,000) X The dilution factor of any dilutions made prior to placing the sample in the counting chamber, e.g., mixing the bacteria with dye
- Rapid, simple and easy method requiring minimum equipment.
- Morphology of the bacteria can be observed as they counted.
- Very dense suspensions can be counted if they are diluted appropriately.
- Dead cells are not distinguished from living cells.
- Small cells are difficult to see under the microscope, and some cells are probably missed.
- Precision is difficult to achieve
- A phase contrast microscope is required when the sample is not stained.
- The method is not usually suitable for cell suspensions of low density i.e. < 107 Cells per ml, but samples can be concentrated by centrifugation or filtration to increase sensitivity.
Viable count/ plate count technique
A viable cell is defined as one that is able to divide and form off springs, and the usual way to perform a viable count is to determine the number of cells in the sample capable of forming colonies on a suitable agar medium.
This method is used routinely and with satisfactory results for the estimation of bacterial populations in milk, water, foods, and many other materials.
- Its sensitivity (theoretically, a single cell can be detected), and it allows for inspection and positive identification of the organism counted.
- It is easy to perform and can be adapted to the measurement of populations of any magnitude.
- It is sensitive method, since small numbers of organisms can be counted. Eg. If a specimen contains as few as one bacterium per ml, one colony should develop up on the plating of 1 ml
- Only living cells develop colonies that are counted;
- Clumps or chains of cells develop into a single colony;
- Colonies develop only from those organisms for which the cultural conditions are suitable for growth.
Types of Techniques;
Pour plate technique, Spread plate technique and Streak plate technique
Pour plate Technique
A pour plate is a method of melted agar inoculation followed by petri dish incubation. Known volume (usually 0.1-1.0 ml) of culture is pipetted into a sterile petri plate; melted agar medium is then added and mixed well by gently swirling the plate on the table top. Because the sample is mixed with the molten agar medium, a larger volume can be used than with the spread plate. However, with the pour plate method the organism to be counted must be able to briefly withstand the temperature of melted agar, 45°C. After solidification of the gel, the plate is inverted and incubated at 37°C for 24-48 hours.
Colonies form within the agar matrix rather than on top as they do when streaking a plate. Pour plates are useful for quantifying microorganisms that grow in solid medium. Because the “pour plate” embeds colonies in agar it can supply a sufficiently oxygen deficient environment that it can allow the growth and quantification of microaerophiles.Spread Plate Technique
Spread plate technique is one of the method of quantifying microorganisms on solid medium. With the spread plate method, a volume of an appropriately diluted culture usually no greater than 0.1 ml is spread over the surface of an agar plate using a sterile glass spreader. The plate is than incubated until the colonies appear, and the number of colonies counted. Instead of embedding microorganisms into agar, as is done with the pour plate method, liquid cultures are spread on the agar surface.
Note: Surface of the plate must be dry, so that the liquid that is spread soaks in. volume greater than 0.1ml are rarely used because the excess liquid does not soak in and may cause the colonies to coalesce as they from, making them difficult to count.
For organisms that grow well on agar plate, streak plate is the method of choice for obtaining pure culture.
Many different streaking patterns can be used to separate individual bacterial cells on the agar surface.- Loop is sterilized, and then a loopful of inoculums is removed from tube
- A loopful of bacterial cells is streaked across the surface of a sterile solidified nutrient medium.
- Following the initial streak, subsequent streaks are made at angles to it, the loop being sterilized between streaks.
- The plates are than incubated under favorable conditions to permit growth of the bacteria.
- After incubation colonies appear along the points of the streak. It is from such well isolated colonies that pure cultures can usually be obtained.


