Mean atmospheric water vapor
The three major constituents of Earth's atmosphere are
nitrogen,
oxygen, and
argon. Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppm by volume in the coldest portions of the atmosphere to as much as 5% by volume in hot, humid air masses, and concentrations of other atmospheric gases are typically quoted in terms of dry air (without water vapor).
[11] The remaining gases are often referred to as trace gases,
[12] among which are the
greenhouse gases, principally carbon dioxide, methane, nitrous oxide, and ozone. Besides argon, already mentioned, other
noble gases, neon, helium, krypton, and xenon are also present. Filtered air includes trace amounts of many other
chemical compounds. Many substances of natural origin may be present in locally and seasonally variable small amounts as
aerosols in an unfiltered air sample, including
dust of mineral and organic composition,
pollen and
spores,
sea spray, and
volcanic ash. Various industrial
pollutants also may be present as gases or aerosols, such as
chlorine(elemental or in compounds),
fluorine compounds and elemental
mercury vapor. Sulfur compounds such as
hydrogen sulfide and
sulfur dioxide (SO
2) may be derived from natural sources or from industrial air pollution.
The average
molecular weight of dry air, which can be used to calculate densities or to convert between mole fraction and mass fraction, is about 28.946
[13] or 28.96
[14] g/mol. This is decreased when the air is humid.
The relative concentration of gases remains constant until about 10,000 m (33,000 ft).
[15]
The volume fraction of the main constituents of the Earth's atmosphere as a function of height according to the MSIS-E-90 atmospheric model.
Earth's atmosphere Lower 4 layers of the atmosphere in 3 dimensions as seen diagonally from above the exobase. Layers drawn to scale, objects within the layers are not to scale. Aurorae shown here at the bottom of the thermosphere can actually form at any altitude in this atmospheric layer.
In general, air pressure and density decrease with altitude in the atmosphere. However, temperature has a more complicated profile with altitude, and may remain relatively constant or even increase with altitude in some regions (see the
temperature section, below). Because the general pattern of the temperature/altitude profile, or
lapse rate, is constant and measurable by means of instrumented
balloon soundings, the temperature behavior provides a useful metric to distinguish atmospheric layers. In this way, Earth's atmosphere can be divided (called atmospheric stratification) into five main layers. Excluding the exosphere, the atmosphere has four primary layers, which are the troposphere, stratosphere, mesosphere, and thermosphere.
[16] From highest to lowest, the five main layers are:
- Exosphere: 700 to 10,000 km (440 to 6,200 miles)
- Thermosphere: 80 to 700 km (50 to 440 miles)[17]
- Mesosphere: 50 to 80 km (31 to 50 miles)
- Stratosphere: 12 to 50 km (7 to 31 miles)
- Troposphere: 0 to 12 km (0 to 7 miles)[18]
Exosphere
The exosphere is the outermost layer of Earth's atmosphere (i.e. the upper limit of the atmosphere). It extends from the
exobase, which is located at the top of the thermosphere at an altitude of about 700 km above sea level, to about 10,000 km (6,200 mi; 33,000,000 ft) where it merges into the
solar wind.
This layer is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules including nitrogen, oxygen and carbon dioxide closer to the exobase. The atoms and molecules are so far apart that they can travel hundreds of kilometers without colliding with one another. Thus, the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow
ballistic trajectories and may migrate in and out of the
magnetosphere or the solar wind.
The exosphere is located too far above Earth for any meteorological phenomena to be possible. However, the
aurora borealis and
aurora australis sometimes occur in the lower part of the exosphere, where they overlap into the thermosphere. The exosphere contains most of the satellites orbiting Earth.
Thermosphere
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the
thermopause at an altitude range of 500–1000 km (310–620 mi; 1,600,000–3,300,000 ft). The height of the thermopause varies considerably due to changes in solar activity.
[17] Because the thermopause lies at the lower boundary of the exosphere, it is also referred to as the
exobase. The lower part of the thermosphere, from 80 to 550 kilometres (50 to 342 mi) above Earth's surface, contains the
ionosphere.
The temperature of the thermosphere gradually increases with height. Unlike the stratosphere beneath it, wherein a temperature
inversion is due to the absorption of radiation by ozone, the inversion in the thermosphere occurs due to the extremely low density of its molecules. The temperature of this layer can rise as high as 1500 °C (2700 °F), though the gas molecules are so far apart that its
temperature in the usual sense is not very meaningful. The air is so rarefied that an individual molecule (of
oxygen, for example) travels an average of 1 kilometre (0.62 mi; 3300 ft) between collisions with other molecules.
[19] Although the thermosphere has a high proportion of molecules with high energy, it would not feel hot to a human in direct contact, because its density is too low to conduct a significant amount of energy to or from the skin.
Mesosphere
The mesosphere is the third highest layer of Earth's atmosphere, occupying the region above the stratosphere and below the thermosphere. It extends from the stratopause at an altitude of about 50 km (31 mi; 160,000 ft) to the mesopause at 80–85 km (50–53 mi; 260,000–280,000 ft) above sea level.
Temperatures drop with increasing altitude to the
mesopause that marks the top of this middle layer of the atmosphere. It is the coldest place on Earth and has an average temperature around −85
°C (−120
°F; 190
K).
[20][21]
Just below the mesopause, the air is so cold that even the very scarce water vapor at this altitude can be sublimated into polar-mesospheric
noctilucent clouds. These are the highest clouds in the atmosphere and may be visible to the naked eye if sunlight reflects off them about an hour or two after sunset or a similar length of time before sunrise. They are most readily visible when the Sun is around 4 to 16 degrees below the horizon. Lightning-induced discharges known as
transient luminous events (TLEs) occasionally form in the mesosphere above tropospheric
thunderclouds. The mesosphere is also the layer where most
meteors burn up upon atmospheric entrance. It is too high above Earth to be accessible to jet-powered aircraft and balloons, and too low to permit orbital spacecraft. The mesosphere is mainly accessed by
sounding rockets and
rocket-powered aircraft.
Stratosphere
The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by the
tropopause. This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the
stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).
The atmospheric pressure at the top of the stratosphere is roughly 1/1000 the pressure at
sea level. It contains the ozone layer, which is the part of Earth's atmosphere that contains relatively high concentrations of that gas. The stratosphere defines a layer in which temperatures rise with increasing altitude. This rise in temperature is caused by the absorption of
ultraviolet radiation (UV) radiation from the Sun by the
ozone layer, which restricts turbulence and mixing. Although the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the stratosphere is much warmer, and may be near 0 °C.
[22]
The stratospheric temperature profile creates very stable atmospheric conditions, so the stratosphere lacks the weather-producing air turbulence that is so prevalent in the troposphere. Consequently, the stratosphere is almost completely free of clouds and other forms of weather. However, polar stratospheric or
nacreous clouds are occasionally seen in the lower part of this layer of the atmosphere where the air is coldest. The stratosphere is the highest layer that can be accessed by
jet-powered aircraft.
Troposphere
The troposphere is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this
altitude varies from about 9 km (5.6 mi; 30,000 ft) at the
geographic poles to 17 km (11 mi; 56,000 ft) at the
Equator,
[18] with some variation due to weather. The troposphere is bounded above by the
tropopause, a boundary marked in most places by a
temperature inversion (i.e. a layer of relatively warm air above a colder one), and in others by a zone which is
isothermal with height.
[23][24]
Although variations do occur, the temperature usually declines with increasing altitude in the troposphere because the troposphere is mostly heated through energy transfer from the surface. Thus, the lowest part of the troposphere (i.e. Earth's surface) is typically the warmest section of the troposphere. This promotes vertical mixing (hence, the origin of its name in the Greek word τρόπος,
tropos, meaning "turn"). The troposphere contains roughly 80% of the
mass of Earth's atmosphere.
[25] The troposphere is denser than all its overlying atmospheric layers because a larger atmospheric weight sits on top of the troposphere and causes it to be most severely compressed. Fifty percent of the total mass of the atmosphere is located in the lower 5.6 km (3.5 mi; 18,000 ft) of the troposphere.
Nearly all atmospheric water vapor or moisture is found in the troposphere, so it is the layer where most of Earth's weather takes place. It has basically all the weather-associated cloud genus types generated by active wind circulation, although very tall cumulonimbus thunder clouds can penetrate the tropopause from below and rise into the lower part of the stratosphere. Most conventional
aviation activity takes place in the troposphere, and it is the only layer that can be accessed by
propeller-driven aircraft.
Space Shuttle Endeavour orbiting in the thermosphere. Because of the angle of the photo, it appears to straddle the stratosphere and mesosphere that actually lie more than 250 km (160 mi) below. The orange layer is the
troposphere, which gives way to the whitish
stratosphereand then the blue
mesosphere.
[26]
Other layers
Within the five principal layers above, that are largely determined by temperature, several secondary layers may be distinguished by other properties:
- The ozone layer is contained within the stratosphere. In this layer ozone concentrations are about 2 to 8 parts per million, which is much higher than in the lower atmosphere but still very small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–21.7 mi; 49,000–115,000 ft), though the thickness varies seasonally and geographically. About 90% of the ozone in Earth's atmosphere is contained in the stratosphere.
- The ionosphere is a region of the atmosphere that is ionized by solar radiation. It is responsible for auroras. During daytime hours, it stretches from 50 to 1,000 km (31 to 621 mi; 160,000 to 3,280,000 ft) and includes the mesosphere, thermosphere, and parts of the exosphere. However, ionization in the mesosphere largely ceases during the night, so auroras are normally seen only in the thermosphere and lower exosphere. The ionosphere forms the inner edge of the magnetosphere. It has practical importance because it influences, for example, radio propagation on Earth.
- The homosphere and heterosphere are defined by whether the atmospheric gases are well mixed. The surface-based homosphere includes the troposphere, stratosphere, mesosphere, and the lowest part of the thermosphere, where the chemical composition of the atmosphere does not depend on molecular weight because the gases are mixed by turbulence.[27] This relatively homogeneous layer ends at the turbopause found at about 100 km (62 mi; 330,000 ft), the very edge of space itself as accepted by the FAI, which places it about 20 km (12 mi; 66,000 ft) above the mesopause.
- Above this altitude lies the heterosphere, which includes the exosphere and most of the thermosphere. Here, the chemical composition varies with altitude. This is because the distance that particles can move without colliding with one another is large compared with the size of motions that cause mixing. This allows the gases to stratify by molecular weight, with the heavier ones, such as oxygen and nitrogen, present only near the bottom of the heterosphere. The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element.[clarification needed]
- The planetary boundary layer is the part of the troposphere that is closest to Earth's surface and is directly affected by it, mainly through turbulent diffusion. During the day the planetary boundary layer usually is well-mixed, whereas at night it becomes stably stratified with weak or intermittent mixing. The depth of the planetary boundary layer ranges from as little as about 100 metres (330 ft) on clear, calm nights to 3,000 m (9,800 ft) or more during the afternoon in dry regions.
The average temperature of the atmosphere at Earth's surface is 14 °C (57 °F; 287 K)
[28] or 15 °C (59 °F; 288 K),
[29] depending on the reference.
[30][31][32]
Pressure and thickness
The average atmospheric pressure at sea level is defined by the
International Standard Atmosphere as 101325
pascals (760.00
Torr; 14.6959
psi; 760.00
mmHg). This is sometimes referred to as a unit of
standard atmospheres (atm). Total atmospheric mass is 5.1480×10
18 kg (1.135×10
19 lb),
[34] about 2.5% less than would be inferred from the average sea level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and
weather.
If the entire mass of the atmosphere had a uniform density equal to sea level density (about 1.2 kg per m
3) from sea level upwards, it would terminate abruptly at an altitude of 8.50 km (27,900 ft). It actually decreases exponentially with altitude, dropping by half every 5.6 km (18,000 ft) or by a factor of 1/
e every 7.64 km (25,100 ft), the average
scale height of the atmosphere below 70 km (43 mi; 230,000 ft). However, the atmosphere is more accurately modeled with a customized equation for each layer that takes gradients of temperature, molecular composition, solar radiation and gravity into account.
In summary, the mass of Earth's atmosphere is distributed approximately as follows:
[35]
- 50% is below 5.6 km (18,000 ft).
- 90% is below 16 km (52,000 ft).
- 99.99997% is below 100 km (62 mi; 330,000 ft), the Kármán line. By international convention, this marks the beginning of space where human travelers are considered astronauts.
By comparison, the summit of Mt. Everest is at 8,848 m (29,029 ft); commercial
airliners typically cruise between 10 and 13 km (33,000 and 43,000 ft) where the thinner air improves fuel economy;
weather balloons reach 30.4 km (100,000 ft) and above; and the highest
X-15 flight in 1963 reached 108.0 km (354,300 ft).
Even above the Kármán line, significant atmospheric effects such as
auroras still occur.
Meteors begin to glow in this region, though the larger ones may not burn up until they penetrate more deeply. The various layers of Earth's
ionosphere, important to
HF radio propagation, begin below 100 km and extend beyond 500 km. By comparison, the
International Space Station and
Space Shuttle typically orbit at 350–400 km, within the
F-layer of the ionosphere where they encounter enough
atmospheric drag to require reboosts every few months. Depending on solar activity, satellites can experience noticeable atmospheric drag at altitudes as high as 700–800 km.
Temperature and speed of sound
The division of the atmosphere into layers mostly by reference to temperature is discussed above. Temperature decreases with altitude starting at sea level, but variations in this trend begin above 11 km, where the temperature stabilizes through a large vertical distance through the rest of the troposphere. In the
stratosphere, starting above about 20 km, the temperature increases with height, due to heating within the ozone layer caused by capture of significant
ultraviolet radiation from the
Sun by the dioxygen and ozone gas in this region. Still another region of increasing temperature with altitude occurs at very high altitudes, in the aptly-named
thermosphere above 90 km.
Because in an
ideal gas of constant composition the
speed of sound depends only on temperature and not on the gas pressure or density, the speed of sound in the atmosphere with altitude takes on the form of the complicated temperature profile (see illustration to the right), and does not mirror altitudinal changes in density or pressure.
Density and mass
Temperature and mass density against altitude from the
NRLMSISE-00standard atmosphere model (the eight dotted lines in each "decade" are at the eight cubes 8, 27, 64, ..., 729)
The density of air at sea level is about 1.2 kg/m
3 (1.2 g/L, 0.0012 g/cm
3). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the
ideal gas law). Atmospheric density decreases as the altitude increases. This variation can be approximately modeled using the
barometric formula. More sophisticated models are used to predict orbital decay of satellites.
The average mass of the atmosphere is about 5 quadrillion (5
×10
15)
tonnes or 1/1,200,000 the mass of Earth. According to the American
National Center for Atmospheric Research, "The total mean mass of the atmosphere is 5.1480
×10
18 kg with an annual range due to water vapor of 1.2 or 1.5
×10
15 kg, depending on whether surface pressure or water vapor data are used; somewhat smaller than the previous estimate. The mean mass of water vapor is estimated as 1.27
×10
16 kg and the dry air mass as 5.1352 ±0.0003
×10
18 kg."
Solar
radiation (or sunlight) is the energy Earth receives from the
Sun. Earth also emits radiation back into space, but at longer wavelengths that we cannot see. Part of the incoming and emitted radiation is absorbed or reflected by the atmosphere. In May 2017, glints of light, seen as twinkling from an orbiting satellite a million miles away, were found to be
reflected light from
ice crystals in the atmosphere.
[37][38]
Scattering
When light passes through Earth's atmosphere,
photons interact with it through
scattering. If the light does not interact with the atmosphere, it is called
direct radiation and is what you see if you were to look directly at the Sun.
Indirect radiation is light that has been scattered in the atmosphere. For example, on an
overcast day when you cannot see your shadow there is no direct radiation reaching you, it has all been scattered. As another example, due to a phenomenon called
Rayleigh scattering, shorter (blue) wavelengths scatter more easily than longer (red) wavelengths. This is why the sky looks blue; you are seeing scattered blue light. This is also why sunsets are red. Because the Sun is close to the horizon, the Sun's rays pass through more atmosphere than normal to reach your eye. Much of the blue light has been scattered out, leaving the red light in a sunset.
Absorption
Rough plot of Earth's atmospheric
transmittance (or opacity) to various wavelengths of electromagnetic radiation, including
visible light.
Different molecules absorb different wavelengths of radiation. For example, O
2 and O
3 absorb almost all wavelengths shorter than 300
nanometers. Water (H
2O) absorbs many wavelengths above 700 nm. When a molecule absorbs a photon, it increases the energy of the molecule. This heats the atmosphere, but the atmosphere also cools by emitting radiation, as discussed below.
The combined
absorption spectra of the gases in the atmosphere leave "windows" of low
opacity, allowing the transmission of only certain bands of light. The
optical window runs from around 300 nm (
ultraviolet-C) up into the range humans can see, the
visible spectrum (commonly called light), at roughly 400–700 nm and continues to the
infrared to around 1100 nm. There are also
infrared and
radio windowsthat transmit some infrared and
radio waves at longer wavelengths. For example, the radio window runs from about one centimeter to about eleven-meter waves.
Emission
Emission is the opposite of absorption, it is when an object emits radiation. Objects tend to emit amounts and wavelengths of radiation depending on their "
black body" emission curves, therefore hotter objects tend to emit more radiation, with shorter wavelengths. Colder objects emit less radiation, with longer wavelengths. For example, the Sun is approximately 6,000
K (5,730
°C; 10,340
°F), its radiation peaks near 500 nm, and is visible to the human eye. Earth is approximately 290 K (17 °C; 62 °F), so its radiation peaks near 10,000 nm, and is much too long to be visible to humans.
Because of its temperature, the atmosphere emits infrared radiation. For example, on clear nights Earth's surface cools down faster than on cloudy nights. This is because clouds (H2O) are strong absorbers and emitters of infrared radiation. This is also why it becomes colder at night at higher elevations.
The
greenhouse effect is directly related to this absorption and emission effect. Some gases in the atmosphere absorb and emit infrared radiation, but do not interact with sunlight in the visible spectrum. Common examples of these are
CO
2 and H
2O.
Refractive index
The
refractive index of air is close to, but just greater than 1. Systematic variations in refractive index can lead to the bending of light rays over long optical paths. One example is that, under some circumstances, observers onboard ships can see other vessels just over the
horizonbecause light is refracted in the same direction as the
curvature of Earth's surface.
The refractive index of air depends on temperature,
[39] giving rise to refraction effects when the temperature gradient is large. An example of such effects is the
mirage.
An idealised view of three pairs of large circulation cells.
Atmospheric circulation is the large-scale movement of air through the troposphere, and the means (with
ocean circulation) by which heat is distributed around Earth. The large-scale structure of the atmospheric circulation varies from year to year, but the basic structure remains fairly constant because it is determined by Earth's rotation rate and the difference in solar radiation between the equator and poles.
Earliest atmosphere
Second atmosphere
Outgassing from
volcanism, supplemented by gases produced during the
late heavy bombardment of Earth by huge
asteroids, produced the next atmosphere, consisting largely of
nitrogen plus
carbon dioxide and inert gases.
[40] A major part of carbon-dioxide emissions dissolved in water and reacted with metals such as calcium and magnesium during weathering of crustal rocks to form carbonates that were deposited as sediments. Water-related sediments have been found that date from as early as 3.8 billion years ago.
[41]
About 3.4 billion years ago, nitrogen formed the major part of the then stable "second atmosphere". The influence of life has to be taken into account rather soon in the history of the atmosphere, because hints of early life-forms appear as early as 3.5 billion years ago.
[42] How Earth at that time maintained a climate warm enough for liquid water and life, if the early Sun put out 30% lower solar radiance than today, is a puzzle known as the "
faint young Sun paradox".
The geological record however shows a continuous relatively warm surface during the complete early
temperature record of Earth – with the exception of one cold glacial phase about 2.4 billion years ago. In the late
Archean Eon an oxygen-containing atmosphere began to develop, apparently produced by photosynthesizing
cyanobacteria (see
Great Oxygenation Event), which have been found as
stromatolite fossils from 2.7 billion years ago. The early basic carbon isotopy (
isotope ratio proportions) strongly suggests conditions similar to the current, and that the fundamental features of the
carbon cycle became established as early as 4 billion years ago.
Ancient sediments in the
Gabon dating from between about 2.15 and 2.08 billion years ago provide a record of Earth's dynamic oxygenation evolution. These fluctuations in oxygenation were likely driven by the Lomagundi carbon isotope excursion.
[43]
Third atmosphere
Oxygen content of the atmosphere over the last billion years
[44][45]
The constant re-arrangement of continents by
plate tectonics influences the long-term evolution of the atmosphere by transferring carbon dioxide to and from large continental carbonate stores. Free oxygen did not exist in the atmosphere until about 2.4 billion years ago during the
Great Oxygenation Event and its appearance is indicated by the end of the
banded iron formations.
Before this time, any oxygen produced by photosynthesis was consumed by oxidation of reduced materials, notably iron. Molecules of free oxygen did not start to accumulate in the atmosphere until the rate of production of oxygen began to exceed the availability of reducing materials that removed oxygen. This point signifies a shift from a
reducing atmosphere to an
oxidizing atmosphere. O
2 showed major variations until reaching a steady state of more than 15% by the end of the Precambrian.
[46] The following time span from 541 million years ago to the present day is the
Phanerozoic Eon, during the earliest period of which, the
Cambrian, oxygen-requiring
metazoan life forms began to appear.
The amount of oxygen in the atmosphere has fluctuated over the last 600 million years, reaching a peak of about 30% around 280 million years ago, significantly higher than today's 21%. Two main processes govern changes in the atmosphere: Plants
using carbon dioxide from the atmosphere and releasing oxygen, and then plants using some oxygen at night by the process of
photorespiration with the remainder of the oxygen being used to breakdown adjacent organic material. Breakdown of
pyrite and
volcanic eruptions release
sulfur into the atmosphere, which oxidizes and hence reduces the amount of oxygen in the atmosphere. However, volcanic eruptions also release carbon dioxide, which plants can convert to oxygen. The exact cause of the variation of the amount of oxygen in the atmosphere is not known. Periods with much oxygen in the atmosphere are associated with rapid development of animals. Today's atmosphere contains 21% oxygen, which is great enough for this rapid development of animals.
[47]
Air pollution
Animation shows the buildup of tropospheric
CO
2 in the Northern Hemisphere with a maximum around May. The maximum in the vegetation cycle follows in the late summer. Following the peak in vegetation, the drawdown of atmospheric
CO
2 due to photosynthesis is apparent, particularly over the
boreal forests.
Earth's atmosphere is about 300 miles (480 kilometers) thick, but most of it is within 10 miles (16 km) the surface. Air pressure decreases with altitude. At sea level, air pressure is about 14.7 pounds per square inch (1 kilogram per square centimeter). At 10,000 feet (3 km), the air pressure is 10 pounds per square inch (0.7 kg per square cm). There is also less oxygen to breathe.
Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere. The atmosphere thins out in each higher layer until the gases dissipate in space. There is no distinct boundary between the atmosphere and space, but an imaginary line about 62 miles (100 kilometers) from the surface, called the Karman line, is usually where scientists say atmosphere meets outer space.
Earth is able to support a wide variety of living beings because of its diverse regional climates, which range from extreme cold at the poles to tropical heat at the Equator. Regional climate is often described as the average weather in a place over more than 30 years. A region's climate is often described, for example, as sunny, windy, dry, or humid. These can also describe the weather in a certain place, but while the weather can change in just a few hours, climate changes over a longer span of time.