In one respect, planet Earth is a misnomer in that 71% of the earth is covered by water and only 29% is terra firma.
Indeed, the abundance of water on Earth is a unique feature that clearly distinguishes our "Blue Planet" from others in the solar system.
Not a drop of liquid water can be found anywhere else in the solar system. It is because the Earth has just the right mass, the right chemical composition, the right atmosphere, and is the right distance from the Sun (the "Goldilocks" principle) that permits water to exist mainly as a liquid.
However, the range of surface temperatures and pressures of our planet permit water to exist in all three states: solid (ice), liquid (water), and gas (water vapor).
Most of the water is contained in the oceans and the high heat capacity of this large volume of water (1.35 million cubic kilometers) buffers the Earth surface from large temperature changes such as those observed on the moon.
Water is the universal solvent and the basis of all life on our Planet. It is an essential life-sustaining resource which led Benjamin Franklin to comment "When the well's dry, we know the worth of water."
The hydrosphere (from Greek ὕδωρ hydōr, "water"[1] and σφαῖρα sphaira, "sphere"[2]) is the combined mass of water found on, under, and above the surface of a planet, minor planet or natural satellite. Although the Earth's hydrosphere has been around for longer than 4 billion years, it continues to change in size. This is caused by seafloor spreading and continental drift, which rearranges the land and ocean.[3]
It has been estimated that there are 1,386 million cubic kilometres (333,000,000 cubic miles) of water on Earth.[4] This includes water in liquid and frozen forms in groundwater, oceans, lakes and streams. Saltwater accounts for 97.5% of this amount, whereas fresh water accounts for only 2.5%. Of this fresh water, 68.9% is in the form of ice and permanent snow cover in the Arctic, the Antarctic, and mountain glaciers; 30.8% is in the form of fresh groundwater; and only 0.3% of the fresh water on Earth is in easily accessible lakes, reservoirs and river systems.[4]
The total mass of the Earth's hydrosphere is about 1.4 × 1018tonnes, which is about 0.023% of Earth's total mass. At any given time, about 20 × 1012tonnes of this is in the form of water vapor in the Earth's atmosphere (for practical purposes, 1 cubic meter of water weighs one tonne). Approximately 71% of Earth's surface, an area of some 361 million square kilometers (139.5 million square miles), is covered by ocean. The average salinity of Earth's oceans is about 35 grams of salt per kilogram of sea water (3.5%).[5]
The water cycle refers to the transfer of water from one state or reservoir to another. Reservoirs include atmospheric moisture (snow, rain and clouds), streams, oceans, rivers, lakes, groundwater, subterraneanaquifers, polar ice capsand saturated soil. Solar energy, in the form of heat and light (insolation), and gravity cause the transfer from one state to another over periods from hours to thousands of years. Most evaporation comes from the oceans and is returned to the earth as snow or rain.[6]:27Sublimation refers to evaporation from snow and ice. Transpiration refers to the expiration of water through the minute pores or stomata of trees. Evapotranspiration is the term used by hydrologists in reference to the three processes together, transpiration, sublimation and evaporation.[6]
Marq de Villiers has described the hydrosphere as a closed system in which water exists. The hydrosphere is intricate, complex, interdependent, all-pervading and stable and "seems purpose-built for regulating life."[6]:26 De Villiers claimed that, "On earth, the total amount of water has almost certainly not changed since geological times: what we had then we still have. Water can be polluted, abused, and misused but it is neither created nor destroyed, it only migrates. There is no evidence that water vapor escapes into space."[6]:26
"Every year the turnover of water on Earth involves 577,000 km3 of water. This is water that evaporates from the oceanic surface (502,800 km3) and from land (74,200 km3). The same amount of water falls as atmospheric precipitation, 458,000 km3 on the ocean and 119,000 km3 on land. The difference between precipitation and evaporation from the land surface (119,000 - 74,200 = 44,800 km3/year) represents the total runoff of the Earth's rivers (42,700 km3/year) and direct groundwater runoff to the ocean (2100 km3/year). These are the principal sources of fresh water to support life necessities and man's economic activities."[4]
Water is a basic necessity of life. Since 2/3 of the Earth is covered by water, the Earth is also called the blue planet and the watery planet.[notes 1] Hydrosphere plays an important role in the existence of the atmosphere in its present form. Oceans are important in this regard. When the Earth was formed it had only a very thin atmosphere rich in hydrogen and helium similar to the present atmosphere of Mercury. Later the gases hydrogen and helium were expelled from the atmosphere. The gases and water vapor released as the Earth cooled became its present atmosphere. Other gases and water vapor released by volcanoes also entered the atmosphere. As the Earth cooled the water vapor in the atmosphere condensed and fell as rain. The atmosphere cooled further as atmospheric carbon dioxide dissolved in to rain water. In turn this further caused the water vapor to condense and fall as rain. This rain water filled the depressions on the Earth's surface and formed the oceans. It is estimated that this occurred about 4000 million years ago. The first life forms began in the oceans. These organisms did not breathe oxygen. Later, when cyanobacteria evolved, the process of conversion of carbon dioxide into food and oxygen began. As a result, Earth's atmosphere has a distinctly different composition from that of other planets and allowed for life to evolve on Earth.
According to Igor A. Shiklomanov, it takes 2500 years for the complete recharge and replenishment of oceanic waters, 10,000 years for permafrost and ice, 1500 years for deep groundwater and mountainous glaciers, 17 years in lakes and 16 days in rivers.[4]
"Specific water availability is the residual (after use) per capita quantity of fresh water."[4] Fresh water resources are unevenly distributed in terms of space and time and can go from floods to water shortages within months in the same area. In 1998 76% of the total population had a specific water availability of less than 5.0 thousand m³ per year per capita. Already by 1998, 35% of the global population suffered "very low or catastrophically low water supplies" and Shiklomanov predicted that the situation would deteriorate in the twenty-first century with "most of the Earth's population will be living under the conditions of low or catastrophically low water supply" by 2025. There is only 2.5% of fresh water in the hydrosphere and only 0.25% of water is accessible for our use.
A hydrosphere is the total amount of water on a planet. The hydrosphere includes water that is on the surface of the planet, underground, and in the air. A planet's hydrosphere can be liquid, vapor, or ice. On Earth, liquid water exists on the surface in the form of oceans, lakes and rivers. It also exists below ground—as groundwater, in wells and aquifers. Water vapor is most visible as clouds and fog.
The frozen part of Earth's hydrosphere is made of ice: glaciers, ice caps and icebergs. The frozen part of the hydrosphere has its own name, the cryosphere. Water moves through the hydrosphere in a cycle. Water collects in clouds, then falls to Earth in the form of rain or snow. This water collects in rivers, lakes and oceans. Then it evaporates into the atmosphere to start the cycle all over again. This is called the water cycle.
Catch a wave, and you're sitting on top of the hydrosphere.
Hydrosphere in Space
Some scientists believe a hydrosphere exists on Europa, a moon of Jupiter, that consists of a frozen outer layer and a giant, liquid ocean underneath it.
Hydrosphere, discontinuous layer of water at or near Earth’s surface. It includes all liquid and frozen surface waters, groundwater held in soiland rock, and atmospheric water vapour.
Water is the most abundant substance at the surface of Earth. About 1.4 billion cubic km (326 million cubic miles) of water in liquid and frozen form make up the oceans, lakes, streams, glaciers, and groundwaters found there. It is this enormous volume of water, in its various manifestations, that forms the discontinuous layer, enclosing much of the terrestrial surface, known as the hydrosphere.
Central to any discussion of the hydrosphere is the concept of the water cycle (or hydrologic cycle). This cycle consists of a group of reservoirs containing water, the processes by which water is transferred from one reservoir to another (or transformed from one state to another), and the rates of transfer associated with such processes. These transfer paths penetrate the entire hydrosphere, extending upward to about 15 km (9 miles) in Earth’s atmosphere and downward to depths on the order of 5 km (3 miles) in its crust.
In the hydrologic cycle, water is transferred between the land surface, the ocean, and the atmosphere.Encyclopædia Britannica, Inc.
hydrologic cycleAn overview of how water in its various phases flows through the hydrologic, or water, cycle.Encyclopædia Britannica, Inc.
This article examines the processes of the water cycle and discusses the way in which the various reservoirs of the hydrosphere are related through the water cycle. It also describes the biogeochemical properties of Earth’s waters at some length and considers the distribution of global water resources and their use and pollution by human society. Details concerning the major water environments that make up the hydrosphere are provided in the articles ocean, lake, river, and ice. See alsoclimate for specific information about the impact of climatic factors on the water cycle. The principal concerns and methods of hydrologyand its various allied disciplines are summarized in Earth sciences.
Distribution And Quantity Of Earth’s Waters
Ocean waters and waters trapped in the pore spaces of sediments make up most of the present-day hydrosphere. The total mass of water in the oceans equals about 50 percent of the mass of sedimentary rocks now in existence and about 5 percent of the mass of Earth’s crust as a whole. Deep and shallow groundwaters constitute a small percentage of the total water locked in the pores of sedimentary rocks—on the order of 3 to 15 percent. The amount of water in the atmosphere at any one time is trivial, equivalent to roughly 13,000 cubic km (about 3,100 cubic miles) of liquid water, or about 0.001 percent of the total at Earth’s surface. This water, however, plays an important role in the water cycle.
Water masses at Earth's surface
reservoir
volume (in cubic kilometres)
percent of total
*As liquid equivalent of water vapour.
**Total surpasses 100 percent because of upward rounding of individual reservoir volumes.
Source: Adapted from Igor Shiklomanov's chapter "World Fresh Water Resources" in Peter H. Gleick (ed.), Water in Crisis: A Guide to the World's Fresh Water Resources, copyright 1993, Oxford University Press, New York, N.Y. Table made available by the United States Geological Survey.
oceans
1,338,000,000
96.5
ice caps, glaciers, and permanent snow
24,064,000
1.74
ground ice and permafrost
300,000
0.22
groundwater (total)
23,400,000
1.69
groundwater (fresh)
10,530,000
0.76
groundwater (saline)
12,870,000
0.93
lakes (total)
176,400
0.013
lakes (fresh)
91,000
0.007
lakes (saline)
85,400
0.006
soil moisture
16,500
0.001
atmosphere*
12,900
0.001
swamp water
11,470
0.0008
rivers
2,120
0.0002
biota
1,120
0.0001
total**
1,409,560,910
101.67
At present, ice locks up a little more than 2 percent of Earth’s water and may have accounted for as much as 3 percent or more during the height of the glaciations of the Pleistocene Epoch (2.6 million to 11,700 years ago). Although water storage in rivers, lakes, and the atmosphere is small, the rate of water circulation through the rain-river-ocean-atmosphere system is relatively rapid. The amount of water discharged each year into the oceans from the land is approximately equal to the total mass of water stored at any instant in rivers and lakes.
Soil moisture accounts for only 0.005 percent of the water at Earth’s surface. It is this small amount of water, however, that exerts the most direct influence on evaporation from soils. The biosphere, though primarily H2O in composition, contains very little of the total water at the terrestrial surface, only about 0.00004 percent, yet the biosphere plays a major role in the transport of water vapour back into the atmosphere by the process of transpiration.
As will be seen in the next section, Earth’s waters are not pure H2O but contain dissolved and particulate materials. Thus, the masses of water at Earth’s surface are major receptacles of inorganic and organic substances, and water movement plays a dominant role in the transportation of these substances about the planet’s surface.
About 107,000 cubic km (nearly 25,800 cubic miles) of rain fall on land each year. The total water in the atmosphere is 13,000 cubic km, and this water, owing to precipitation and evaporation, turns over every 9.6 days. Rainwater is not pure but rather contains dissolved gases and salts, fine-ground particulate material, organic substances, and even bacteria. The sources of the materials in rainwater are the oceans, soils, fertilizers, air pollution, and fossil fuelcombustion.
It has been observed that rains over oceanic islands and near coasts have ratios of major dissolved constituents very close to those found in seawater. The discovery of the high salt content of rain near coastlines was somewhat surprising because sea salts are not volatile, and it might be expected that the process of evaporation of water from the sea surface would “filter” out the salts. It has been demonstrated, however, that a large percentage of the salts in rain is derived from the bursting of small bubbles at the sea surface due to the impact of rain droplets or the breaking of waves, which results in the injection of sea aerosol into the atmosphere. This sea aerosol evaporates, with resultant precipitation of the salts as tiny particles that are subsequently carried high into the atmosphere by turbulent winds. These particles may then be transported over continents to fall in rain or as dry deposition.
Assuming equilibrium with the atmospheric carbon dioxide partial pressure (PCO2) of 10–3.5 (0.00035) atmosphere, the approximate mean composition of rainwater is in parts per million (ppm): sodium (Na+), 1.98; potassium (K+), 0.30; magnesium (Mg2+), 0.27; calcium (Ca2+), 0.09; chloride (Cl−), 3.79; sulfate (SO42−), 0.58; and bicarbonate (HCO3−), 0.12. In addition to these ions, rainwater contains small amounts of dissolved silica—about 0.30 ppm. The average pH value of rainwater is 5.6. (The term pH is defined as the negative logarithm of the hydrogen ion concentration in moles per litre. The pH scale ranges from 0 to 14, with lower numbers indicating increased acidity.) On a global basis, as much as 35 percent of the sodium, 55 percent of the chlorine, 15 percent of the potassium, and 37 percent of the sulfate in river water may be derived from the oceans through sea aerosol generation.
A considerable amount of data has become available for marine aerosols. These aerosols are important because (1) they are vital to any description of the global biogeochemical cycle of an element, (2) they may have an impact on climate, (3) they are a sink, via heterogeneouschemical reactions, for trace atmospheric gases, and (4) they influence precipitation of cloud and rain droplets. For many trace metals, the ratio of the atmospheric flux to the riverine flux for coastal and remote oceanic areas may be greater than one, indicating the importance of atmospheric transport. Figures have been prepared that illustrate the enrichment factors (EF) of North Atlantic marine aerosols and suspended matter in North Atlantic waters relative to the crust (that is, terrestrial sources), where
Advertisement
and (X/Al)air and (X/Al)crust refer, respectively, to the ratio of the concentration of the element X to that of Al, aluminum (which is an easily observed terrestrial component of aerosols), in the atmosphere and in average crustal material. Comparing the enrichment factors in marine aerosols with those of suspended matter in the water column indicates qualitatively the marine aerosols’ importance as a source that alters the composition of marine suspended matter and, consequently, their importance to deep-sea sedimentation. Moreover, such comparisons help identify how significant terrestrial sources are for both the marine aerosols and the water below.
In some instances the ratios of ions in rainwater deviate significantly from those in seawater. Mechanisms proposed for this fractionation are, for example, the escape of chlorine as gaseous hydrogen chloride (HCl) from sea salt aerosol with a consequent enrichment in sodium and bubbling and thermal diffusion. In addition, release of biogenic gasessuch as dimethyl sulfide (DMS) from the sea surface and its subsequent reaction in the oceanic atmosphere to sulfate can change rainwater ionratios with respect to seawater. Soil particles also can influence rainwater composition. Rainfall over the southwestern United States contains relatively high sulfate concentrations because of sulfate-bearing particles that have been blown into the atmosphere from desert soils. Rain near industrial areas commonly contains high contents of sulfate, nitrate, and carbon dioxide (CO2) largely derived from the burning of coal and oil. There are two main processes leading to the conversion of sulfur dioxide (SO2) to sulfuric acid (H2SO4). These are reactions with hydroxyl radicals (–OH) and with hydrogen peroxide (H2O2) in the atmosphere:
and
Advertisement
The sulfuric acid then dissociates to hydrogen and sulfate ions:
For the nitrogen gases nitric oxide (NO) and nitrogen dioxide (NO2) released from fossil fuel burning, their atmospheric reactions lead to the production of nitric acid (HNO3) and its dissociation to hydrogen ions (H+) and nitrate (NO3−). These reactions are responsible for the acid rainconditions that occurred in the northeastern United States, southeastern Canada, and western Europe during the second half of the 20th century (see belowAcid rain). The high sulfate values of the rain in the northeastern United States reflect the acid precipitation conditions of this region.
River and ocean waters
River discharge constitutes the main source for the oceans. Seawater has a more uniform composition than river water. It contains, by weight, about 3.5 percent dissolved salts, whereas river water has only 0.012 percent. The average density of the world’s oceans is roughly 2.75 percent greater than that of typical river water. Of the average 35 parts per thousand salts of seawater, sodium and chlorine make up almost 30 parts, and magnesium and sulfate contribute another four parts. Of the remaining one part of the salinity, calcium and potassiumconstitute 0.4 part each and carbon, as carbonate and bicarbonate, about 0.15 part. Thus, nine elements (hydrogen, oxygen, sulfur, chlorine, sodium, magnesium, calcium, potassium, and carbon) make up 99 percent of seawater, though most of the 94 naturally occurring elements have been detected therein. Of importance are the nutrient elements phosphorus, nitrogen, and silicon, along with such essential micronutrient trace elements as iron, cobalt, and copper. These elements strongly regulate the organic production of the world’s oceans.
In contrast to ocean water, the average salinity of the world’s rivers is low—only about 0.012 percent, or 120 ppm by weight. Of this salt content, carbon as bicarbonate constitutes 58 parts, or 48 percent, and calcium, sulfur as sulfate, and silicon as dissolved monomeric silicic acid make up a total of about 39 parts, or 33 percent. The remaining 19 percent consists predominantly of chlorine, sodium, and magnesium in descending importance. It is obvious that the concentrations and relative proportions of dissolved species in river waters contrast sharply with those of seawater. Thus, even though seawater is derived in part by the chemical differentiation and evaporation of river water, the processes involved affect every element differently, indicating that simple evaporation and concentration are entirely secondary to other processes.
Water-rock interactions as determining river water composition
Generally speaking, the composition of river water, and thus that of lakes, is controlled by water-rock interactions. The attack of carbon dioxide-chargedrain and soil waters on the individual minerals in continental rocks leads to the production of dissolved constituents for lakes, rivers, and streams. It also gives rise to solid alteration products that make up soils or suspended particles in freshwater aquatic systems. The carbon dioxide content of rain and soil waters is of particular importance in weathering processes. The pH of rainwater equilibrated with the atmospheric carbon dioxide partial pressure of 10−3.5 (0.00032) atmosphere is 5.6. In industrial regions, rainwater pH values may be lower because of the release and subsequent hydrolysis of acid gases—namely, sulfur dioxide and nitrogen oxides (NOx) from the combustion of fossil fuels. After rainwater enters soils, its characteristics change markedly. The usual few parts per million of salts in rainwater increase substantially as the water reacts. The upper part of the soil is a zone of intense biochemical activity. The bacterial population near the surface is large, but it decreases rapidly downward. One of the major biochemical processes of the bacteria is the oxidation of organic material, which leads to the release of carbon dioxide. Soil gases obtained above the zone of water saturation may contain 10 to 40 times as much carbon dioxide as the free atmosphere, and in some cases carbon dioxide has been shown to make up 30 percent of the soil gases as opposed to 0.03 percent of the free atmosphere. In addition to the acid effects of carbon dioxide, there is a highly acidic microenvironment created by the roots of living plants. Values of pH as low as 2 have been measured immediately adjacent to root hairs. The combined length of a plant’s root hairs may be several kilometres, so their chemical effects on acidic water are formidable.
These acid solutions in the soilenvironment attack the rock minerals, the bases of the system, producing neutralization products of dissolved constituents and solid particles. Two general types of reactions occur: congruent and incongruent. In the former, a solid dissolves, adding elements to the water according to their proportions in the mineral. An example of such a weathering reaction is the solution of calcite (CaCO3) in limestones:
Here one of the HCO3− ions comes from calcite and the other from CO2(g) in the reacting water. The amount of carbon dioxide dissolved according to reaction (4) depends on temperature, pressure, original bicarbonate content of the weathering solution, and partial pressure of the carbon dioxide. The carbon dioxide and the temperature are the most important variables. Increases in one or both of these variables lead to increases in the amount of calcite dissolved. For example, for a carbon dioxide pressure of 10−3.5 (0.00032) atmosphere, the amount of calcium that can be dissolved until saturation is about 10−3.3 (0.0005) mole, or 20 ppm, at 25 °C (77 °F). For an atmospheric carbon dioxide pressure of 10−2(0.01) atmosphere and for a soil atmosphere of nearly pure carbon dioxide, the values are 65 and 300 ppm, respectively. The weathering of calcite leads to the release of calcium and bicarbonate ions into soil waters and groundwaters, and these constituents eventually reach lakeand river systems. The insoluble residue of quartz (SiO2), clay minerals, and iron oxides (e.g., FeOOH) in the limestone rock make up the deep-red soils that form from limestoneweathering. These particles may be carried into streams by runoff and hence to lakes and the oceans and become part of the suspended load of these systems.
An example of an incongruent weathering reaction—that is, one where only part of a solid is consumed—is that involving aluminosilicates. One such reaction is the aggressive attack of carbon dioxide-charged soil water on the mineral K-spar (KAlSi3O8), an important phase found in continental rocks. The reaction is
It should be noted that the K-spar changes into a new mineral—kaolinite(a clay mineral) in this case—plus solution, and acid is consumed. The total dissolved material per litre of soil solution released is about 60 ppm for a solution initially equilibrated with a typical soil carbon dioxide content. The water resulting from reaction (5) would contain bicarbonate, potassium, and dissolved silica in the ratios 1:1:2, and the new solid, kaolinite, would be a weathering product. These dissolved constituents and the solid alteration product would eventually reach rivers to be transferred possibly to lakes and ultimately to the sea. It has been demonstrated that the composition of river water is the product of a variety of mineral-water reactions such as (4) and (5). The dissolved load of the world’s rivers comes from the following sources: 7 percent from beds of halite (NaCl) and saltdisseminated in rocks, 10 percent from gypsum (CaSO4·2H2O) and anhydrite (CaSO4) deposits and sulfate salts disseminated in rocks, 38 percent from limestones and dolomites, and 45 percent from the weathering of one silicate mineral to another. Of the bicarbonate ions in river water, 56 percent stems from the atmosphere, 35 percent from carbonate minerals, and 9 percent from the oxidative weathering of fossil organic matter. Reactions involving silicate minerals account for 30 percent of the riverine bicarbonate ions.
Besides dissolved substances, rivers also transport solids in traction (i.e., bed load) and, most importantly, suspended load. The present global river-borne flux of solids to the oceans is estimated as 15.5 billion metric tons (about 17.1 billion tons) per year. Present elemental fluxes are estimated in millions of metric tons per year as silicon, 4,420; aluminum, 1,460; iron, 740; calcium, 330; potassium, 310; magnesium, 210; and sodium, 110. The total load of particulate organic carbon of the world’s rivers is 180 million metric tons (nearly 200 million tons) per year. The riverine fluxes of trace metals to the oceans are dominated by their occurrence in the particulate phase as opposed to the dissolved phase. The particulate matter in river water is an important source of silicon, aluminum, iron, titanium, rubidium, scandium, vanadium, the lanthanoids, and other elements for deep-sea sediments.
waters
Although lakewatersconstitute only a small percentage of the water in the hydrosphere, they are an important ephemeral storage reservoir for fresh water. Aside from their recreational use, lakes constitute a source of water for household, agricultural, and industrial uses. Lake waters are also very susceptible to changes in chemical composition due to these uses and to other factors.
In general, fresh waters at the continental surface evolve from their rocksources by enrichment in calcium and sodium and by depletion in magnesium and potassium. In very soft waters the alkalies may be more abundant than the alkaline earths, and in the more-concentrated waters of open river systems calcium > magnesium > sodium > potassium. For the anions, in general, HCO3− exceeds SO42− , which is greater in concentration than Cl−. It is worthwhile at this stage to consider some major mechanisms that control global surface water composition. These mechanisms are atmospheric precipitation, rock reactions, and evaporation-precipitation.
The mechanism principally responsible for waters of very low salinity is precipitation. These waters tend to form in tropical regions of low relief and thoroughly leached source rocks. In these regions rainfall is high, and volumes of fresh water (rivers, tributary streams, pools, etc.) within a watershed are usually dominated by salts brought in by precipitation. Such waters constitute one part of a chain of water volumes that begins with falling precipitation and ends with the release of water into the ocean, for which the final part of the chain represents water volumes dominated by contributions of dissolved salts from the rocks and soils of their basins. These waters have moderate salinity and are rich in dissolved calcium and bicarbonate. They are in turn the “end-member” of another series that extends from the calcium-rich, medium-salinity fresh waters to the high-salinity, sodium chloride-dominated waters of which seawater is an example. Seawater composition, however, does not evolve directly from the composition of fresh waters and the precipitation of calcium carbonate; other mechanisms that control its composition are involved. Such factors as relief and vegetation also may affect the composition of the world’s surface waters, but atmospheric precipitation, water-rock reactions, and evaporation-crystallization processes appear to be the dominant mechanisms governing continental surface water chemistry.
Continental fresh waters evaporate once they have entered closed basins, and their constituent salts precipitate on the basin floors. The composition of these waters may evolve along several different paths, depending on their initial chemical makeup.
Biological processes strongly affect the composition of lake waters and are responsible to a significant degree for the compositional differences between the upper water layer (the epilimnion) and the lower water layer (the hypolimnion) of lakes. The starting point is photosynthesis, represented by the following reaction:
The reversal of this reaction is oxidation-respiration leading to the release of the nutrientsnitrogen and phosphorus, as well as carbon dioxide. In a stratified lake, carbon, nutrients, and silica are extracted from the upper layer during photosynthesis. This process leads to reduced concentrations of nitrate, phosphate, and silica in these waters and, during times of maximum daylight organic production, to supersaturation of the upper layer with respect to dissolved oxygen. The organic matter produced by phytoplankton may be either grazed upon by zooplankton and other organisms or decomposed by bacteria. Some of it, however, sinks into the lower layer. There it is further decomposed, especially by bacteria, resulting in the release of dissolved phosphorus and nitrogen and the consumption of oxygen. Oxygen concentrations therefore are reduced in these lower lake waters, because stratification prevents oxygen exchange with the atmosphere. Furthermore, the inorganic carbonate and siliceous skeletons of the dead organisms sinking into the lower layer may dissolve, giving rise to increased concentrations of dissolved silica and inorganic carbon in the deep waters of stratified lakes. This dissolution is a result of undersaturation of the waters of the lower layer with respect to the opaline silica and calcium carbonate that make up the skeletons of the dead and sinking plankton. These natural biological processes have been accelerated in some lakes because of excess nutrient input by human activity, resulting in the eutrophication of lake waters and marine systems (see belowEutrophication).
Processes affecting the major chemical components of groundwater
component
origin*
*The sources for each constituent are given in approximate order of decreasing importance.
Source: Adapted from Elizabeth Kay Berner and Robert A. Berner, The Global Water Cycle: Geochemistry and Environment, copyright 1987, Table 4.6, p. 170. Reproduced by permission of Prentice Hall, Inc., Englewood Cliffs, N.J.
sodium ion
sodium chloride dissolution (some pollutive)
plagioclase weathering
rainwater addition
potassium ion
biotite weathering
K-feldspar weathering
biomass decreases
dissolution of trapped aerosols
magnesium ion
amphibole and pyroxene weathering
biotite (and chlorite) weathering
dolomite weathering
olivine weathering
rainwater addition
calcium ion
calcite weathering
plagioclase weathering
dolomite weathering
dissolution of trapped aerosols
biomass decreases
bicarbonate ion
calcite and dolomite weathering
silicate weathering
sulfate ion
pyrite weathering (some pollutive)
rainwater addition
chloride ion
sodium chloride dissolution (some pollutive)
rainwater addition
hydrogen silicate
silicate weathering
The biological processes of greatest importance are microbial metabolism, organic production, and respiration (oxidation). By far the most important overall process for the major constituents of groundwater is that of mineral-water reactions, which were briefly described above in River and ocean waters. Thus, the composition of groundwaters strongly reflects the types of rockminerals that the waters have encountered in their movement through the subsurface.
Advertisement
In general, the most mobile elements in groundwater—i.e., those most easily liberated by the weathering of rock minerals—are calcium, sodium, and magnesium. Silicon and potassium have intermediate mobilities, and aluminum and iron are essentially immobile and locked up in solid phases.
Groundwaters are highly susceptible to contamination because of human activities and the fact that their dissolved constituents are derived to a large extent from the leaching of surface materials. Some of the nitrogen and phosphorus applied to soils as fertilizers and organic pesticides may be leached and leak into groundwater systems, leading to increased concentrations of ammonium and phosphate. Radioactive wastes, industrial chemicals, household materials, and mine refuse are other anthropogenic sources of dissolved substances that have been detected in groundwater systems.
Ice is nearly a pure solid and, as such, accommodates few foreign ions in its structure. It does contain, however, particulate matter and gases, which are trapped in bubbles within the ice. The change in composition of these materials through time, as recorded in the successive layers of ice, has been used to interpret the history of Earth’s surface environmentand the impact of human activities on this environment. The increase in the lead content of continental glacial ice with decreasing age of the ice up to the middle of the 1970s, for example, reflects the progressive input of tetraethyl lead into the global environment from gasoline burning. (Stringent environmental regulations that appeared in the 1970s regarding the use of leaded gasoline has led to a fall in lead concentrations in ice laid down since that time.) Also, atmospheric carbon dioxide and methane concentrations, which have increased significantly during the past century because of anthropogenic activities, are faithfully recorded in ice bubbles of the thick continental ice sheets. By 2016 atmospheric carbon dioxide and methane concentrations had increased by more than 43 percent and more than 150 percent, respectively, higher than their concentrations 200 years ago; the latter concentration values were obtained from measurements of the gases in air trapped in ice.