Laboratory incubators provide a controlled, contaminant-free environment for safe, reliable work with cell and tissue cultures by regulating conditions such as temperature, humidity, and CO2. Microbiological incubators are used for the growth and storage of bacterial cultures.
In biology, an incubator is a device used to grow and maintain microbiological cultures or cell cultures. The incubator maintains optimal temperature, humidity and other conditions such as the carbon dioxide (CO2) and oxygen content of the atmosphere inside. Incubators are essential for a lot of experimental work in cell biology, microbiology and molecular biology and are used to culture both bacterial as well as eukaryotic cells.
Louis Pasteur used the small opening underneath his staircase as an incubator. Incubators are also used in the poultry industry to act as a substitute for hens. This often results in higher hatch rates due to the ability to control both temperature and humidity. Various brands of incubators are commercially available to breeders.
The simplest incubators are insulated boxes with an adjustable heater, typically going up to 60 to 65 °C (140 to 150 °F), though some can go slightly higher (generally to no more than 100 °C). The most commonly used temperature both for bacteria such as the frequently used E. coli as well as for mammalian cells is approximately 37 °C (99 °F), as these organisms grow well under such conditions. For other organisms used in biological experiments, such as the budding yeast Saccharomyces cerevisiae, a growth temperature of 30 °C (86 °F) is optimal.
More elaborate incubators can also include the ability to lower the temperature (via refrigeration), or the ability to control humidity or CO2 levels. This is important in the cultivation of mammalian cells, where the relative humidity is typically >80% to prevent evaporation and a slightly acidic pH is achieved by maintaining a CO2 level of 5%.